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ON THE NATURE OF TIME, SPACE AND GRAVITATION* 

L.I. SEDOV 

The influence of space-time models on the nature of gravitational forces 
is analysed. 

The starting points in the theory of gravitation depend on the introduction of a con- 
tinuous four-dimensional manifold of points, filled by families of world lines of individual 
freely moving particles K. The particle motions are described quantitatively by means of 
three- and four-dimensional velocities and accelerations, which are introduced by imposing a 
pseudo-Riemann metric the theory. The same effects may, in general, be described by different 
models which operator with similar devices and concepts but are not directly reducible to one 
another /I, 2/. 

It will be shown below that , in general, and in particular in the Special Theory of 
Relativity (sTR), the gravitational field is closely linked with the way in which space and 
time are modelled, and with the introduction of external fields for the gravitational forces 
due to the interaction of individual particles with adjacent particles, which possess mass. 
It is natural and convenient to describe these fields in coordinate systems which accompany 
the continuously distributed parts of the material (we consider a dust of moving individual 
particles which conserve their masses and move without collisions). 

We shall henceforth use the accompanying Lagrange coordinate systems %', 5'. E3,E4 = z, in 
which an element ds of a world line of the family K can always be written canonically in the 
metric form /3, 4/ 

ds2= dta + 2gal@,z)c@dz + gar@,r)@=d$Y (1) 

where we assume for simplicity that the velocity of light c = 1, while a, y = 1, 2, 3 are 
indices of summation, and gll(Ea,r) are the components of the metric tensor; the coordinate T 
is the proper global time /S, 6/ in the family K of world lines, with differential dr which 
is uniquely defined at every point of the family K in the Riemann space corresponding to the 
metric (1). 

In accordance with the kinematic definition of the four-dimensional velocity vector u = 
drfdz and the acceleration vector a = duldz, the following relations hold for their components 
u' and ai in any accompanying coordinate systems on world lines of family K, taken in any 
Riemann spaces (for simplicity we take c = 1): 

Hence 
a, = f3g,, (fv, rpt = au, (p, ~)/at (4) 

and a,=0 since &, = 1. In (2)-(4) the world lines and space can be arbitrary, but the 
coordinates must be accompanying. 

It must be said that, in the accompanying coordinate systems, the three-dimensional 
velocities are zero, though the absolute four-dimensional acceleration "al%? equal to the 

corresponding three-dimensional acceleration, is non-zero, since the accompanying system is 
movable with respect to the locally inertial system and, in general, is deformable. 

We know that, in any observer's coordinate system, the components of the vectors u, a&, 
and of the metric tensor gij on the corresponding world lines of family Xiare calculated from 
the data (l)-(4) by suitable relationsfortransforming the coordinates .z (&=,z) for the law 
of motion of the medium from the accompanying system Ea,r to the system x' of the observer. 

The main geometric and physical laws and the defining quantities are best stated and 
described in the proper and accompanying coordinate systems connected directly with the objects 
being studied with suitable characterization of events calculated on local inertial reference 
systems. From the point of view of outside observers, the theory greatly depends on the 
properties of the processes in the observer's own system. 

There are problems, however, the significance of which liesin finding the physical and 
mathematical effects of different kinds which are in essence concerned with describing the 
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effects from the point of view of a fixed observer. 
For instance, it is postulated in quantum mechanics that the results cannot in essence 

be separated from the observer. The same can sometimes be said of relativity theory, in 
which the results of observer's measurements can seriously depend on the mechanical states 
of the object and observer. In particular, we are thinking of problems concerned with the 
typical properties of processes, defined by a complete set of data which are, in general, 
obtained in non-holonomic locally defined proper systems of reference. A typical example is 
the global influence of perturbations on the observed orbits of stellar bodies under different 
kinds of model assumptions. 

We can also mention that the readings of inertial instruments mounted on moving objects 
correspond to the metric in the accompanying reference system. 

At the same time, the coordinate T of global proper time appears in the canonical form 
of (11, linked with the family K of world lines. 

As our basic postulate corresponding to experience, we assume that, in both Newtonian 
and relativistic mechanics, for every particle with constant mass which carries an infinite- 
simal acceleration gauge in free flight, thereisin vacua a state of weightlessness which 
shows itself by the gauge indicator remaining undisturbed. 

This means that, given any fixed model of space and time, whether in Newtonian or 
relativistic theories, in the absence of any external forces other than gravitational, we 
must have the equations for any particle of constant mass m in its free motion: 

^-n%b&+mg=o% 01 aabs=g (5) 

Here, g is the acceleration vector of the gravitational force, regarded as a functional 
of points of space-time and the law of motion, orl in the case of a specifically stated 
problem for the motion of test particles, as a function of the coordinates of points of space- 
time. 

It must be noted and emphasized that the presence of acceleration g does not destroy the 
conditions (5) of weightlessness , and we can regard the inertia force as a like-acting external 
force of reaction of space-time, introduced as an external connection defined by the metric. 

Eqs.(S) hold for any freely moving individual small particle, and are the general 
equations of celestial mechanics. 

To sum up, in our theory below, the modelling of the motion of individual material 
particles with constant mass , or the motion of dust as a continuum, is linked with the 
introduction of the accompanying metric (1) for the family K of world Lines for four-dimen- 
sionalspace-time,and of the, in general, variable vector of accelerations g as a function 
of points of space, linked with the presence of gravitational forces in the basic postulate 
(5). 

In Newtonian mechanics the field of accelerations g is introduced and justified by 
Newton's law of universal gravitation. This justification is not in general physically 
acceptable, however, since it contradicts the invariance of gravitational effects under 
Lorents transformations and involves action at a distance and the instantaneous propagation 
of disturbances. 

If, however, the field of accelerations g is taken in accordance with Newton's law of 
universal gravitation, it can be calculated approximately in practice. On the other hand, 
experiments show that the laws of motion of celestial bodies , calculated in accordance with 
Newton's theory, are, in general, in very good agreement with actual observations. This is 
because, in all possible routine applications, the ratio ve/ca (where v is the three- 
dimensional vector equal to the difference between the four-dimensional velocities of the 
moving particles, and c is the velocity of light), is negligibly small. In this connection, 
after replacing v*fcs by zero and passing from the proper coordinate system of the particles 
to the observer's coordinates bymeansofa Lorents transformation, the main relativistic 
effects are eliminated. The local errors generated by this physical incorrectness are ex- 
tremely small. If intervals appear an the particle world lines in the Rfemann spaces, on 
which v2ic2 cannot be assumed to be zero, we can pose the problem of finding the refined field 
of acceleration in the gravitational field in the context of relativistic gravitation theory. 

In this connection, instead of Newton's law of universal gravitation, we have to use 
extra assumptions that can be checked experimentally. 

An example is the assumption used in the General Theory of Relativity (GTR) that g=O, 
i.e., that gravitational forces are not present when the space has suitable curvature, so 
that we find in the GTR, in accordance with postulate (5) and relation (41, that sabo = 0 at 
points of any world lines of test particles. In the GTR, therefore, all the world lines of 
freely moving particles must be geodesics. Given an arbitrary but fixed pseudo-Riemann space, 
the equation g = 0 clearly contradicts experience. 

Obviously, in the STR and other fixed spaces , a field of gravitational acceleration 

BZO and a gravitation force G = mg#O must certainly be introduced. Nevertheless, for 
the curved pseudo-Riemann spaces specially defined in the GTR, the condition g = 0 may be 
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admissible in certain very important model statements for the appropriate particle motions in 
corresponding large scale volumes of space and time. This means that mass gravitational 
effects can be replaced by suitable space curvature , and absolute time can be replaced by the 
value of the global proper time in (1) for the corresponding family I(, 

In general, however, we cannot ignore direct experience that reveals the presence of 
gravitational forces. The best example is Newton's observation of the falling apple. It is 
also obvious that, in accordance with the law of universal mass gravitation, the weight force 
G in Newtonian mechanics is present, is generated by the acceleration G, and is an ex- 
perimentally established fact. 

On the other hand, we know that the equation of field theory in the GTR for dust with 
density P is, in the accepted notation, in-any system of coordinates, 

&S _ .' 
'[tg"R= q&j 

where 1( is a scalar constant coefficient. On the basis of Manehi's identity, we 
(6): ukvlpui f pw@&u@ = o. Hence it fol.lows that Vi(pu')=O since the particle masses 
while, by (5)‘ the second term gives 

u'P$ T dukjdr--_gk ~0 

It therefore follows from (6) that g= o at any regular points of space for 
values of p. 

@j 
obtain from 
are constant, 

any finite 

In general, the field of the vector g or the field of its gradients can be measured in 
experiments by special instruments /7/, and this can serve as an experimental justification 
for its determination, which may not in fact be in agreement with Newton's law of universal 
gravitationorwith the G!PR for physical objects which possess mass. 

It should be said that we are speaking of the replacement of the law of universal mass 
gravitation in Newtonian mechanics by relativistic laws of interaction between individual 
particles: the difference between these laws is due to the high three-dimensional velocities 
of the particles and the four-dimensional curvature of space. 

When, instead of Newton's modal for space-time, we choose any fixed four-dimensional 
pseudo-Riemann space, e.g,, Minkovskii space in the STR or in general any other specific 
Riemann space, we can pose the problem of finding the corresponding properties of the acceler- 
ation g field or the gravity force G by analogy with Newtonian physics, e.g., by conversion 
of the experimentally tested field of three-dimensional accelerations in Newtonian mechanics, 
which are found by means of universal graviation or by direct measurement of the accelerations 
or their gradients in experiments with freely moving particles. 

Let us mention a method whereby, knowing the field of accelerations g* +o in some 
fixed pseudo-Riemannspace R*,ws can find by conversion the field accelerations g for the 
similar problem of the motion of a material medium from the point of view of any observer in 
the fixed space R* or in another fixed pseudo-Riemann space R #R*. (Since the data of the 
vector g must strictly speaking always be checked by experiment, extra hypotheses are required 
to specify the field R with vzfcp= 1). 

By the analogy of the problems~me~ that the accompanying systems of coordinates t',%2r 

P and the family of lines K are the same, but the proper global times and the metric com- 
ponents gil may be different for the same world lines ta = goa = corm& which fill the entire 
space. 

Note that, in this case, in each of the spaces R* and R the metric tensors g,,* and &J 
in the accompanying coordinates fan be reduced to the canonical form (11, whence it follows 
that, generally speaking, &*fdr if R*f;R. 

If &,* = &J, then R* = R; in this case, however I along with the system of accompany- 
ing coordinates ~U,T we can also introduce the system of observer's coordinates P,t with 
Plplga and dt=#=dt; but nevertheless we can find the functions 

.?? = +k f&S, E* = T), k = 1, 2,3,4 (7) 

where in accordance with (7), from the invariance of the metric form & in the case R* =R, 
it is found that 

When R* ==R the determination of the four functions (7), or alternatively, the law of 
motion of points of the continuum on passing from variables f" to variables x',is a problem 
of inertial navigation. We know that it can be solved experimentally, or by theoretical 
calculations for the reference systems gk and xk of (7), when R* = R are given /4/. In 
this case, relations (7) are generalized Lorents transformations. Obviously, thetransition 
from one solution to another with fixed space fi* amounts tothetransformation at each point 
of space of the vector .g to the vector g* for a fixed metric, in accordance with the tensor 
expression (6). 
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If, in the same Riemann space, an exact solution of the problem of the motion of dust in 
variables fl,z'= t as a function of the Lagrange variables ga, 7 = 7$ is obtained, then this 
defines its own four-dimensional transformation (7) as 

5a = y= (?a, t), iz* = t P) 
Here, obviously, relations (9) define the law of motion ’ 5 (qk) in a metric in the same 

space R, while the three-dimensional components of the velocity v'* can also be regarded, in 
view of (9), as functions of the accompanying coordinates na and t, which will not in general 
be canonical in the sense of definition (1). 

If the variables xi are taken in the same Cartesian coordinates of Newton and Minkovskii 
in the STR, then obviously I observers can be introduced into the Minkovskii and Newton spaces, 
for whichthedescription of motions is well defined by the same functions 

2a = 'p= ($, t) (10) 

where t is Newtonian absolute time, which is not, however, equal to Minkovskii proper time T, 
while the Lagrange coordinates qa= const define the same specific law of motion in both cases 
for different observers. When solving a problem on the motion of particles , we can use Newton's 
metric 

~$1" = dx” + dx=’ + dx3’, dt 
or MinkovsXi's metric 

and the law of motion (10). 
Our future arguments are based on transformation (lo), which can, in general, be obtained 

by means of different statements of problems of dust motion. 
On the basis of the coordinate transformation (9), which is not a Lorents transformation 

with passage from 2' to n",we can write 

and hence 

ds"= (i- va) (dt)* + 2(3a-v)dqadt + (aass)dqadq@ (W 

where ea are covariant components of the coordinate bases in system n',and dt is the dif- 
ferential of Newtonian absolute time, the same as observer's time in the STR. Relation (11) 
gives the metric in the accompanying system of na,t coordinates in Minkovskii space. To 
obtain the metric in the accompanying canonical system , it suffices to make the further four- 
dimensional transformation 

after which we obtain the accompanying metric in the canonical form 

ds= = cl?-$ + 2ga,d[=dr + g,zRdF‘dEfi 

where &?w = u&l - vz = ~a, so that (4) is satisfied, while dt is an element of global time. 
If in general space R* +=R, we can also introduce the same family K of world lines, the 

transformation (7), and different tensor components of metrics gil* in R*,and g,, in R, but 
the connection (8) between these metric tensors is destroyed. 

Accordingly, along the same lines K we can define separately the local kinematic tensor 
characteristics, e.g., for the four- and three-dimensional velocities u and v, and for 
acceleration Q,, in R* by means of g,,*, and in R by means of gir, on the basis of canonical 
formula (1). 

It is also obvious that the different vectors and relations between them, defined in Rx, 
and the similarly defined analogous vectors in the same sense in R, can also be considered in 
R*, but with a suitably changed meaning. 

This situation means that we can pass from relations and characteristics in one Riemann 
space to similar relations and characteristics in another Riemann space. In particular, we 
can introduce s& into R* and aab into R along the same lines ga = con&. Hence, obviously, 

in accordance with the weightlessness conditions (51, we find that, along with the equations 

a$ = g* in R*, the equations aabs=& in R must also be satisfied, while it turns out that 
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8* f g and r& f kbt!- 

As particular examples of different canonical metrics (11 with K= I(' but R*+R, We 
can take 

where k>O is a constant scalar. It is easily seen that, in this case, for the acceleration 
compunents along Che wrold lines K we have +'= ktr,, 

Thus, from the acceleration field in it* we find the acceleration field in R. For instance, 
from the acceleration field in the STFX we can find the acceleration field in any model Riemann 
space, i.e., in Riemann spaces with K= K', diffexent metrics and components of the acceler- 
ation eand ag' axe obtained. 

It should be emphasized that the components of the acceleration field a, in a fixed space 
with BY = Ii are transformed for different K(q" +ga) as components of the same three- 
dimensional vectors a = g, while on transition fromone space to another the vectors are 
changed while keeping them equal as characteristics of the space itself. 

For the same family of world lines K we can consider different Riemann spaces a* and R 
and accelerations g* and gt if the transformations (7) are chosen or designated. 

On the other hand, if the space &* is fixed, then at every point of it we can use inertial 
navigation to find relations (7) for different observers, and the corresponding families K 
and K'# along with the corresponding components of the accleration vector for the same vector 

&?a 
In particular, if the metric for the family t@ = &,a = const in the accompanying coordinate 

system has the form 

where z is proper time, then at any point of these spaces we find that a = g = 0. Versions 
of t&e metric are obtained, corresponding to the general theory of relativity, i.e., the 
presence of the field g is replaced by curvature of space, in which all the world lines of 
test particles are geodesics. 

Since, under any coordinate transformations in a fixed space, geodesics always transform 
into geodesics, the general forms of metrics (3.1 and (12) are obviously invariant. 

Notice also that, given any pseudo-Riemann space, the vector aab can easily always be 
calculated in the accompanying coordinate system (1) , end hence, on the basis of (51, the 
field for the vector g can be obtained, provided that the field is known in a given space, 
e.g., in the STR. 

It is obviously not possible, merely from the weightlessness conditions (51, and from 
the condition represented by (5) that external forces of a non-gravitational type be absent 
in free motion, to establish the metric (1) uniquely; this is bound up with the need to choose 
a model of relativistic space-time , and alsoanacceleration field for the gravity forces EF+ 
In this connection we can pose problems of choosing auxiliary assumptions for establishing the 
model metrics of the medium of pseudo-Riemann four-dimensional spaces. 

In particular, it is easily seen that there is a vast class of pseudo-Riemann spaces in 
which motions of the dust matter can occur only under the conditions aa = g =o, which appear 
in the general theory of relativity. 

To choose specific model spaces + apart from specifying an experimentally justified 
gravitational field of accelerations g+Q or saa.+O, we also need a number of basic 
additional assumptions, which bring in physically justified fmctionals and variational 
methods for obtaining the appropriate equations [they may be equations of the liilbert-Einstein 
types depending on the different specific problems, the Riemann spaces that result from 
solving them can differ widely). 

This situation makes the theory much more complicated. The model theory of Newtonian 
graviation in fixed space is obviously simple and describes the effect of gravitation with 
very great accuracy. In this context, Logunov's idea of constructing a similar mechanical 
theory in the STR must be recognized as natural. Oux above theoretical results make clear 
the physical essence af gravitation and the ways of constructing new models that take account 
of relativistic effects, if we recall that all the mathematical models in physics can be 
coarsened and impxoved, and there are good reasons for this in the GTR. 

At the same time, in present-day practice , given suitable equations in the GRT, unique 
solutions on dust motions can only be obtained, strictly speaking, in partirlar examples and 
only with supplementary particular assumptions. The standardisatFon of statements of problems 
in the GTR for partial differential equations by means of conditions of the initial or boundary 
value type has not yet been introduced in applications /8, 9/. 

The author thanks A.V. Zhukov for editorial assistance. 
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ON COMPLICATED YODELS OF CONTINUOUS lvlEDIA 
IN THE GENERAL THEORY OF RELATIVITY* 

A.G. TSYPKIN 

Let zi be the coordinates in four-dimensional Riemann space, in which the components of 

In the context of the general theory of relativity, the system of Euler's 
equations is obtained from the variational equation under the assumption 
that the Lagrangian of the material depends on supplementary (as compared 
with classical theories) thermodynamic parameters, and when possible 
irreversible processes are taken into account. It is shown that, for a 
thermodynamically closed system I the equations of momenta for a continuous 
medium are a consequence of the field equations. The form of the energy- 
momentum tensor of the material is considered when the arguments include 
the Lagrangian of the derivatives of the supplementary thermodynamic 
parameters. 

the metric tensor g,j, the coefficients of parallel transfer rflxr and the curvature tensor 
&$ are connected by the equations 

Rij = R,;b, R = Rtjgg’j 

where Rtfare the components of the Ricci tensor ) and R is the scalar curvature of the space 
(the Ricci scalar). Throughout, the small Latin indices cover the values 1, 2, 3, 4; 
summation is performed with respect to repeated sub- and super-scripts; the signature of the 
metric is (+ - - -). 

Together with the variables s'in the Riemann space we consider for a solution the 
accompanying coordinates Ek, i n which fixed values E1.E2,gS individualize a point of the 
continuous medium; we assume that there is a one-to-one correspondence 
variables,z* and Sk, 

.zi = CC'@") between the 
which is the law of motion of the continuum of the continuous medium. 
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